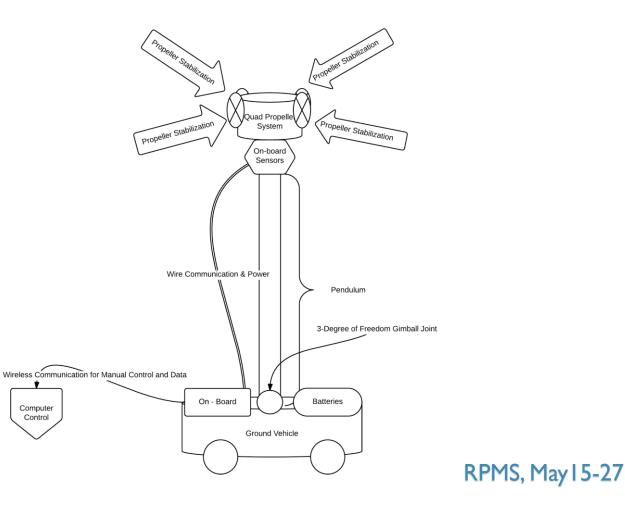
ROBOTIC PLANT MEASUREMENT SYSTEM

GROUP MAY 15-27

SENIOR DESIGN I


Team Advisers Dr. Nicola Elia Dr. Philip Jones Paul Uhing Matt Rich Team Members Dylan Gransee Robert Larsen Alberto Di Martino Ian McInerney Aaron Pederson Rohit Zambre Fengxing Zhu

PROBLEM STATEMENT

- Agricultural experiments
 - Experimental crop fields
 - Measure growth and analyze progress
- Automation of tasks with robotics
 - Saves time, money and personnel
- GOAL: Demonstrate a proof of concept of a cooperative robotic system

CONCEPTUAL SKETCH

- Ground vehicle
 - On-board computation
- Quad-propeller system
 - On-board sensors
- Instrumentation arm
 - Mounted cameras

FUNCTIONAL REQUIREMENTS

- Autonomous system
- Stable camera equipment during motion
- Height greater than 12 feet
 - Proof of concept will be 7-9 feet
- Sufficient hardware for control and measurement

NON-FUNCTIONAL REQUIREMENTS

- Easily modifiable control system
- Useful documentation
- Data collection and analysis
- Ability to send commands from external computer
- Safety features in field
 - Subset of safety features in proof of concept

CONSTRAINTS & CONSIDERATIONS

Future constraints

- Width of crop row 30 inches
- Height of crop 12 feet
- Movement in field

POTENTIAL RISKS & MITIGATION

- Damage to system
 - Testing
 - Implementation
- Exceeding budget
- Time constraints

COST ESTIMATE

Item Description	Estimated Cost
Brushless Motors, Motor Controllers, Propellers	\$300
Battery Packs	\$75
Ground Robot System	\$3,000
Gimbal Joint	\$100
Sensor System (Gyroscope/Accelerometer)	\$50
Camera System	\$15,000
Total	\$18,525*

*All items will be sponsored by the client

RPMS, May I 5-27

- System Modeling
 - Fall
 - Characterize system's physics
 - Model I-D instrumentation arm system
 - Validate experiment with simulation
 - Spring
 - Model 2-D instrumentation arm system
 - Validate experiment with simulation

Ground Robot

- Fall
 - Revive ground robot (Eris)
 - Generate custom PWM outputs
 - Integrate with new camera system
 - PID control of PWM outputs
- Spring
 - Testing
 - Integrating fully with instrumentation arm

Instrumentation arm

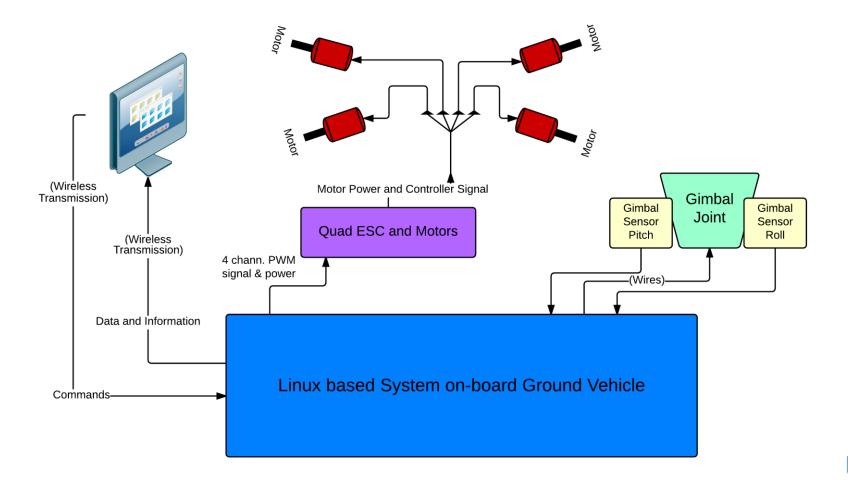
- Fall
 - Build instrumentation arm
 - Mount motors
 - Control I-D instrumentation arm system
- Spring
 - Control 2-D instrumentation arm system
 - Design & build base joint

Data Acquisition

- Fall
 - Design data logging format
 - Build MATLAB parsing script
 - Design MATLAB analysis tool
- Spring
 - Build MATLAB analysis tool
 - Add useful features

PROJECT SCHEDULE

ID Task Name	2014			2015				
	ID Task Name	Oct	Νον	Dec	Jan	Feb	Mar	Apr
1	Balance 1-Degree of Freedom Pendulum							
2	Data Logging for Prototypes							
З	Establish Reliable Ground Platform							
4	Basic Data Logging for End-Product							
5	Balance 2-Degree of Freedom Pendulum							
6	Develop Stable Mount on Ground Vehicle for Pendulum							
7	Control GUI							
8	Refine Data Logging for End-Product							
9	Balance 2-Degree of Freedom Pendulum on Moving Gound Vehicle							


RPMS, May I 5-27

SYSTEM DESIGN

RPMS, MAY I 5-27

DETAILED DESIGN

RPMS, May I 5-27

FUNCTIONAL DECOMPOSITION

- Camera System
 - Read location of physical body using IR tracking
 - Relays location data to ground robot
- Ground Robot
 - Analysis of camera data to create controller inputs
 - Run the control algorithm to create ESC commands

ESCs

Converts ESC command to motor voltage

Motors

- Generate torque and force to actuate the physical body
- Physical Body
 - Sensed by cameras as it moves

HW/SW TECHNOLOGY & PLATFORM

- Eris (ground robot)
 - Pluto PC
 - PC-104+ Adapter
 - Mesa 4i68
 - Motors
- Instrumentation arm
 - Inverted pendulum
 - Motors

- Software
 - C, C++
 - Al substructure
 - GUI

TEST PLAN

- Use Simulink models to design controller
- Use actual hardware to test the entire system
- Collect data from inputs and outputs for analysis
- Refine controller and Simulink models

DIFFICULTIES & RESOLUTIONS

- Software design based on previous team
 - Changing the functionality of modules
 - Designing a system without previous experience on field
- Expansion of specialized codebase
 - Code has very little portability
 - Update the old system for easier expansion
- Hardware
 - Custom mount for system of propellers
 - Base joint on ground robot for instrumentation arm

CONCLUSION

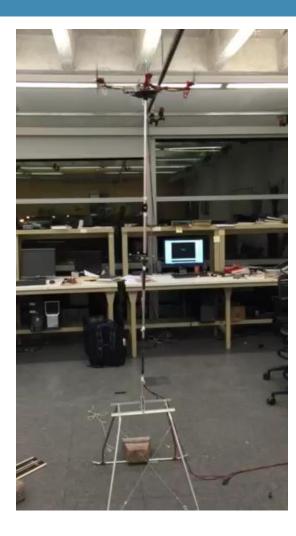
RPMS, MAY I 5-27

CURRENT STATUS

- System modeling
 - Completed modeling of I-D instrumentation arm
- Ground robot
 - Successfully revived
 - Able to generate custom PWMs
 - Working on integrating new camera system

- Instrumentation arm
 - Successful construction (I-D)
 - Control of I-D system
- Data acquisition
 - Able to log and parse data
 - Building analysis tool

TASK RESPONSIBILITIES & CONTRIBUTIONS


- Robert Larsen Project Manager
- Ian McInerney Technology Lead (Key Concept Holder)
- Dylan Gransee Webmaster
- Alberto Di Martino Assistant Webmaster
- Aaron Pederson Communications
- Fengxing Zhu Assistant Communications
- Rohit Zambre Team Secretary

NEXT SEMESTER PLANS

- Integrate Eris with instrumentation arm
- Derive 2-D instrumentation arm Simulink model
- Design/Test controller to balance 2-D instrumentation arm
- Expand data acquisition tool
- Expand ground robot GUI

DEMONSTRATION

RPMS, May I 5-27

THANK YOU!

QUESTIONS?

