ROBOTIC AGRICULTURAL DATA ACQUISITION

GROUP MAY 15-27

SENIOR DESIGN II

Team Advisers

Dr. Nicola Elia Dr. Philip Jones Paul Uhing Matt Rich

Team Members

Dylan Gransee Robert Larsen Alberto Di Martino Ian McInerney Aaron Pederson Rohit Zambre Fengxing Zhu

PROBLEM STATEMENT

- Agricultural experiments
 - Experimental crop fields
 - Measure growth and analyze progress
- Automation of tasks with robotics
 - Saves time, money and personnel

FINAL DESIGN

- Ground vehicle
 - On-board computation
- Instrumentation arm
 - Mounted cameras
- Quad-propeller system
 - On-board sensors

PROJECT END GOAL

The end goal of our Senior Design project is to demonstrate a proof of concept of such a robotic system.

- Reused existing resources left over from previous senior design teams
 - Use of existing quad-rotor frame
 - Ground robot
 - Use existing camera system for sensing
 - Develop indoors on smaller scale

DJI Quadcopter Frame

Prototype Design Modifications

Ideal Implementation

Omnidirectional Robot

DEMOVIDEO

RADA, MAY15-27

MODULAR BREAKDOWN

- Ground robot
- Propeller system & instrumentation arm
- Data analysis tool
- Camera system
- Base-joint

GROUND ROBOT

- Main system design
 - Pluto PC board (Intel Atom Processor)
 - Mesa 4i68 FPGA (Spartan III)
 - Linux OS (C++ software)
- Complete system design by previous teams
 - Repurposing functionality
- Sufficient for prototype system following modifications

GROUND ROBOT

- Issues with adaptation
 - Unable to support new libraries
 - Non-portable development environment
 - Unable to control all new and old motors
- Solutions
 - Removal of unused modules
 - Update codebase dependencies

GROUND ROBOT

- Implementing control
 - PID controller
- Issues
 - TCP timeout
 - FPGA .bit file generation

GROUND ROBOT VHDL

- Reverse-engineered VHDL
- Modified VHDL to
 - Work with H-bridge drivers for ground robot motors
 - Allow PWMs of different frequencies

- Propellers to provide thrust
- Base joint rotates in pitch and roll
- Default ESC firmware replaced with BLHeli
- All power and control supplied by ground robot

- System physics models for I-D and 2-D movement
 - Simulation in Simulink
 - Verification against physical system

- Initial Implementation
 - Used existing PID control software and RC RF link
- Issues
 - PID computation had time calculation issues
 - RF link provided significant delay to the controller
- Solution
 - Migrate control software to the ground robot platform

- Purpose: Debugging
- Two interfaces
 - MATLAB Command-line interface
 - MATLAB GUI interface
- MATLAB-based functions
 - Parsing
 - Data analysis

Data logging format

Output of parsing: MATLAB struct

Data analysis: MATLAB functions

- MATLAB-based GUI
 - User-friendly, even for non-MATLAB users
 - Uses the universal format and functions
 - Usable by future design teams

BASE JOINT

What we want

- No yaw rotation
- Angle sensors integrated
- Actuators integrated
- Why we want it
 - Additional sensing capability
 - More precise actuation

BASE JOINT

Design

- Current joint modified U-Joint
 - Fixable axis
- New robot/joint design
 - Custom U-Joint

BASE JOINT

- Actuator/Sensor
 - Research possible options
 - Membrane Potentiometer
 - Hall effect
 - Run tests
 - Compare results

Membrane potentiometer (top) VS Camera system tracking (bottom)

- Each system independently verified via functional testing
- Controllers tuned using logged data and plots to visualize behavior

THANK YOU!

QUESTIONS?

BACKUP SLIDES

BUDGET/RESOURCES

Team-member Hours

■ Aaron ■ Alberto ■ Dylan ■ Fengxing ■ Ian ■ Robert ■ Rohit

Total Hours = 1404.6

BUDGET/RESOURCES

